

[image: C:\xampp\htdocs\elearning\exam\includes\image\logo_ok-removebg-preview.png]


Promuex Inc. (Canada) Global Professional Certificate. 

"Preparing for the Promuex Inc. Global Professional Certificate: Essential Knowledge and Skills Checklist"
Overview: The Promuex Inc. (Canada) Global Professional Certificate recognizes expertise across specialized fields like AI, cybersecurity, healthcare, and finance. To excel, you’ll need foundational skills, knowledge of industry tools, and practical experience. Here’s what to focus on before certification:
[bookmark: _GoBack]Agile Software Development: Study Guide
Based on the Promuex Inc. Global Professional Certificate framework, here's a comprehensive guide to prepare for certification in Agile Software Development.
Core Knowledge Areas
1. Agile Fundamentals
· Agile Manifesto: Master the four core values and twelve principles 
· Individuals and interactions over processes and tools
· Working software over comprehensive documentation
· Customer collaboration over contract negotiation
· Responding to change over following a plan
· Agile Mindset: Understand the cultural shift from traditional to agile approaches
· History and Evolution: Know how Agile emerged from Lean manufacturing and iterative development
· Agile vs. Waterfall: Compare and contrast traditional and agile methodologies
· When to Use Agile: Understand contexts where Agile thrives and where it may not be suitable
2. Agile Frameworks and Methodologies
Scrum (Most widely used)
· Roles: 
· Product Owner: Manages backlog, defines requirements, prioritizes work
· Scrum Master: Facilitates process, removes impediments, coaches team
· Development Team: Self-organizing, cross-functional team members
· Artifacts: 
· Product Backlog: Prioritized list of features and requirements
· Sprint Backlog: Work committed for current sprint
· Product Increment: Potentially shippable product at sprint end
· Events/Ceremonies: 
· Sprint Planning: Define sprint goals and select backlog items
· Daily Standup: 15-minute sync on progress and blockers
· Sprint Review: Demo completed work to stakeholders
· Sprint Retrospective: Team reflects on process improvements
· Sprint Cycle: Typically 1-4 weeks, understand sprint cadence and rhythm
Kanban
· Principles: Visualize work, limit work-in-progress (WIP), manage flow
· Kanban Board: Columns representing workflow stages (To Do, In Progress, Testing, Done)
· WIP Limits: Understanding why and how to limit concurrent work
· Continuous Flow: No fixed iterations, work flows continuously
· Metrics: Lead time, cycle time, throughput
Extreme Programming (XP)
· Practices: 
· Pair Programming: Two developers working together at one workstation
· Test-Driven Development (TDD): Write tests before code
· Continuous Integration: Merge code frequently, automated builds
· Refactoring: Improve code structure without changing functionality
· Simple Design: Build only what's needed now
· Values: Communication, Simplicity, Feedback, Courage, Respect
Lean Software Development
· Seven Principles: Eliminate waste, amplify learning, decide late, deliver fast, empower team, build integrity, optimize the whole
· Value Stream Mapping: Identify and eliminate non-value-adding activities
SAFe (Scaled Agile Framework)
· Enterprise-level Agile: Coordinate multiple agile teams
· Levels: Team, Program, Large Solution, Portfolio
· Program Increment (PI) Planning: Quarterly planning for multiple teams
3. Agile Planning and Estimation
User Stories
· Format: "As a [user type], I want [goal] so that [benefit]"
· INVEST Criteria: Independent, Negotiable, Valuable, Estimable, Small, Testable
· Acceptance Criteria: Definition of Done for each story
· Story Mapping: Visualize user journey and prioritize features
Estimation Techniques
· Story Points: Relative sizing using Fibonacci sequence (1, 2, 3, 5, 8, 13...)
· Planning Poker: Team-based estimation game
· T-Shirt Sizing: XS, S, M, L, XL for rough estimates
· Velocity: Measure team's average story points per sprint
· Capacity Planning: Account for team availability and commitments
Backlog Management
· Backlog Refinement/Grooming: Continuously review and update backlog
· Prioritization Techniques: 
· MoSCoW: Must have, Should have, Could have, Won't have
· Value vs. Effort Matrix
· Weighted Shortest Job First (WSJF)
· Epic Decomposition: Break large features into manageable user stories
4. Agile Engineering Practices
Test-Driven Development (TDD)
· Red-Green-Refactor Cycle: Write failing test → Make it pass → Improve code
· Unit Testing: Test individual components in isolation
· Benefits: Better design, fewer bugs, living documentation
Continuous Integration/Continuous Deployment (CI/CD)
· Automated Builds: Code automatically compiled and tested on commit
· Automated Testing: Run test suites automatically
· Deployment Pipelines: Automated path from code to production
· Tools: Jenkins, GitLab CI, CircleCI, GitHub Actions
Code Quality Practices
· Pair Programming: Knowledge sharing and quality improvement
· Code Reviews: Peer review before merging
· Refactoring: Regular code improvement sessions
· Coding Standards: Consistent style and conventions
· Technical Debt Management: Balance new features with code health
Version Control
· Git Fundamentals: Branching, merging, pull requests
· Branching Strategies: GitFlow, trunk-based development
· Collaborative Development: Managing conflicts and code integration
5. Agile Metrics and Reporting
Team Metrics
· Velocity: Story points completed per sprint
· Burndown Charts: Remaining work over time within a sprint
· Burnup Charts: Completed work over time
· Cumulative Flow Diagram: Work distribution across workflow stages
· Cycle Time: Time from start to completion of work item
· Lead Time: Time from request to delivery
Quality Metrics
· Defect Density: Bugs per unit of code
· Test Coverage: Percentage of code covered by tests
· Code Churn: Frequency of code changes
· Escaped Defects: Bugs found in production
Business Metrics
· Customer Satisfaction: NPS scores, user feedback
· Time to Market: Speed of feature delivery
· ROI: Return on investment for features
· Release Frequency: How often you deploy to production
6. Collaboration and Communication
Team Dynamics
· Self-Organizing Teams: Empowerment and autonomy
· Cross-Functional Collaboration: Developers, testers, designers working together
· Psychological Safety: Creating environment for open communication
· Conflict Resolution: Addressing disagreements constructively
Stakeholder Management
· Product Owner Engagement: Regular collaboration on priorities
· Sprint Reviews: Demonstrating value to stakeholders
· Transparent Communication: Radiating information, visible metrics
· Managing Expectations: Balancing requests with capacity
Distributed Teams
· Remote Collaboration Tools: Jira, Trello, Miro, Slack, Zoom
· Asynchronous Communication: Documentation and async updates
· Time Zone Management: Scheduling across regions
7. Agile in Practice
Starting Agile Transformation
· Assessing Readiness: Organizational culture and structure
· Pilot Projects: Starting small before scaling
· Change Management: Addressing resistance and building buy-in
· Training and Coaching: Developing team capabilities
Common Challenges
· Incomplete Transitions: "Water-Scrum-Fall" anti-patterns
· Lack of Executive Support: Securing leadership commitment
· Distributed Teams: Maintaining collaboration across locations
· Technical Debt: Balancing speed with code quality
· Scope Creep: Managing changing requirements
Scaling Agile
· Multiple Team Coordination: Dependencies and integration
· Architectural Runway: Technical foundation for future features
· Communities of Practice: Sharing knowledge across teams
· Agile Portfolio Management: Aligning teams with business strategy
Practical Skills to Develop
Technical Skills
1. Tool Proficiency: Jira, Azure DevOps, Trello, Asana, Rally
2. Facilitation: Running effective ceremonies and meetings
3. Coaching: Guiding teams in agile practices
4. Metrics Analysis: Interpreting data to drive improvements
5. Backlog Management: Organizing and prioritizing work effectively
Soft Skills
1. Servant Leadership: Supporting and enabling the team
2. Active Listening: Understanding team and stakeholder needs
3. Adaptability: Responding to change and uncertainty
4. Collaboration: Working effectively across roles and functions
5. Continuous Improvement: Embracing feedback and experimentation
6. Conflict Resolution: Facilitating productive disagreements
7. Influence Without Authority: Building consensus
Study Approach
Theoretical Preparation
· Read foundational texts: 
· "Agile Estimating and Planning" by Mike Cohn
· "Scrum: The Art of Doing Twice the Work in Half the Time" by Jeff Sutherland
· "User Stories Applied" by Mike Cohn
· "The Lean Startup" by Eric Ries
· Study case studies: Spotify model, Amazon's two-pizza teams, successful transformations
· Understand anti-patterns: Learn from common failures
Practical Experience
· Participate in sprints: Experience the full cycle
· Practice ceremonies: Facilitate standups, retrospectives, planning sessions
· Create artifacts: Product backlogs, sprint backlogs, user stories
· Use agile tools: Get hands-on with Jira, Trello, or similar platforms
· Contribute to retrospectives: Practice continuous improvement
Hands-On Activities
1. Write user stories with proper format and acceptance criteria
2. Estimate work using planning poker and story points
3. Create and manage a Kanban board
4. Facilitate a retrospective using various formats (Start-Stop-Continue, 4Ls, Sailboat)
5. Track metrics and create burndown charts
6. Practice TDD: Write tests first, then implement features
7. Set up CI/CD pipeline: Automate build and deployment
Key Concepts to Master
Agile Values
· Transparency: Everyone sees the work and progress
· Inspection: Regularly review artifacts and progress
· Adaptation: Adjust based on inspection findings
· Respect: Value all team members and their contributions
· Courage: Do the right thing, speak truth to power
· Focus: Concentrate on sprint goals
· Commitment: Dedicate to achieving goals
· Openness: Share information and challenges
Definition of Done (DoD)
· Understand how to create team agreements on completeness
· Code written, tested, reviewed, integrated, documented, deployed
Definition of Ready (DoR)
· Criteria for backlog items to be sprint-ready
· Clear acceptance criteria, estimated, dependencies identified
Certification Preparation
Expected Competencies
1. Framework Knowledge: Deep understanding of Scrum, Kanban, XP
2. Role Clarity: Distinguish responsibilities of PO, SM, Dev Team
3. Ceremony Execution: Run effective agile events
4. Artifact Creation: Develop quality backlogs, user stories, acceptance criteria
5. Metrics Application: Use data to drive decisions
6. Problem-Solving: Address impediments and challenges
7. Scaling Understanding: Coordinate multiple agile teams
Common Certification Topics
· Agile principles and values
· Scrum framework components
· User story creation and estimation
· Sprint planning and execution
· Handling change and uncertainty
· Team dynamics and collaboration
· Metrics and continuous improvement
· Agile vs. traditional project management
Tools and Technologies
Project Management
· Jira: Most popular agile tool
· Azure DevOps: Microsoft's suite
· Trello: Simple Kanban boards
· Asana: Flexible work management
· Monday.com: Visual project tracking
Collaboration
· Confluence: Documentation and knowledge sharing
· Slack/Teams: Communication platforms
· Miro/Mural: Virtual whiteboarding
· Zoom: Video conferencing
Development
· Git/GitHub/GitLab: Version control
· Jenkins/CircleCI: CI/CD pipelines
· SonarQube: Code quality analysis
· Selenium/JUnit: Testing frameworks
Additional Preparation Tips
1. Join Agile Communities: Attend meetups, conferences, webinars
2. Get Certified: Consider Certified Scrum Master (CSM), Professional Scrum Master (PSM), SAFe certifications
3. Practice Facilitation: Run mock ceremonies with peers
4. Build a Portfolio: Document agile projects and your role
5. Stay Current: Follow agile thought leaders on social media
6. Read Case Studies: Learn from real-world implementations
7. Experiment: Try different techniques and tools
8. Seek Mentorship: Learn from experienced agile practitioners
Assessment Areas
Expect evaluation on:
· Comprehensive understanding of agile frameworks (especially Scrum)
· Ability to write effective user stories and acceptance criteria
· Estimation and planning techniques
· Facilitation of agile ceremonies
· Understanding of agile metrics and their application
· Knowledge of engineering practices (TDD, CI/CD, pair programming)
· Problem-solving in agile contexts
· Scaling agile across multiple teams
· Change management and organizational transformation
By mastering these knowledge areas and developing both technical and interpersonal skills, you'll be well-prepared for the Promuex Inc. Global Professional Certificate in Agile Software Development. Focus on understanding the "why" behind agile practices, not just the "how," and emphasize practical application through hands-on experience.

Promuex Inc. Canada (https://promuex.ca/)

image1.png




image2.png




